Health Care and Public Service Use and Costs Before and After Provision of Housing for Chronically Homeless Persons With Severe Alcohol Problems

Mary E. Larimer; Daniel K. Malone; Michelle D. Garner; et al.

http://jama.ama-assn.org/cgi/content/full/301/13/1349
Concerns about high public system costs incurred by chronically homeless individuals have inspired nationwide efforts to eliminate chronic homelessness.1,2 Homeless people have high barriers to health care access generally but use acute care services at high rates.3-5 Mortality rates among homeless adults are 3 or more times that of the general population.6,7

Chronically homeless people with severe alcohol problems, sometimes referred to as chronic public inebriates, are highly visible on the streets and are costly to the public through high use of publicly funded health and criminal justice systems resources.8-12 Typical interventions such as shelters, abstinence-based housing, and treatment programs fail to reverse these patterns for this population.10,13 Health conditions and mortality rates within this population are similar to those found in developing countries.14,15 Average age at death is estimated to be 42 to 52 years, with 30% to 70% of deaths related to alcohol.7,10,17

The provision of housing reduces hospital visits, admissions, and duration of hospital stays among homeless individuals,2,3,18,19 and overall public system spending is reduced by nearly as much as is spent on housing.20 One type of

Context Chronically homeless individuals with severe alcohol problems often have multiple medical and psychiatric problems and use costly health and criminal justice services at high rates.

Objective To evaluate association of a “Housing First” intervention for chronically homeless individuals with severe alcohol problems with health care use and costs.

Design, Setting, and Participants Quasi-experimental design comparing 95 housed participants (with drinking permitted) with 39 wait-list control participants enrolled between November 2005 and March 2007 in Seattle, Washington.

Main Outcome Measures Use and cost of services (jail bookings, days incarcerated, shelter and sobering center use, hospital-based medical services, publicly funded alcohol and drug detoxification and treatment, emergency medical services, and Medicaid-funded services) for Housing First participants relative to wait-list controls.

Results Housing First participants had total costs of $8,175,922 in the year prior to the study, or median costs of $4066 per person per month (interquartile range [IQR], $2067-$8264). Median monthly costs decreased to $1492 (IQR, $337-$5709) and $958 (IQR, $98-$3200) after 6 and 12 months in housing, respectively. Poisson generalized estimating equation regressions using propensity score adjustments showed total cost rate reduction of 53% for housed participants relative to wait-list controls (rate ratio, 0.47; 95% confidence interval, 0.25-0.88) over the first 6 months. Total cost offsets for Housing First participants relative to controls averaged $2449 per person per month after accounting for housing program costs.

Conclusions In this population of chronically homeless individuals with high service use and costs, a Housing First program was associated with a relative decrease in costs after 6 months. These benefits increased to the extent that participants were retained in housing longer.
of supportive housing, called Housing First, removes the requirements for sobriety, treatment attendance, and other barriers to housing entrance. Thus far, Housing First (HF) approaches have primarily targeted homeless people with serious mental illnesses and co-occurring substance use disorders.

An HF program in Seattle—known as 1811 Eastlake—targets homeless adults with severe alcohol problems who use local crisis services at the highest levels. The project has been controversial because residents are allowed to drink in their rooms. The current study evaluated outcomes of the project on public use and costs for housed participants compared with wait-list controls and secondarily evaluated changes in reported alcohol use for housed participants and the effects of housing duration on service use.

METHODS

Participants and Recruitment Procedures

Participants were drawn from a rank-ordered list of chronically homeless individuals who incurred the highest total costs in 2004 for use of alcohol-related hospital emergency services, the sobering center, and King County jail. Community providers familiar with the population also recommended additional eligible individuals. Because it was considered unethical not to offer housing when available, random assignment to condition was not used. Rather, housing program staff offered housing to each person found from the list on a “first found, first assigned” basis. Once the housing was filled, additional participants were added to a wait-list. Verbal consent for research recruitment was gathered at initial contact, and written consent was obtained at the baseline interview. Eighty-one individuals were offered immediate housing and 14 individuals from the wait-list were housed prior to their 3-month assessment (mean, 44 days). These 95 participants were considered the treated group and compared with wait-list participants (n=39). Recruitment occurred between November 2005 and March 2007 (Figure 1). Because intervention participants were recruited first, data on wait-list controls were only available to 6 months whereas 12-month data were available for housed participants.

Procedure

Residents at 1811 Eastlake have no treatment requirements, but on-site case managers work to engage residents about substance use and life goals. Meals and on-site health care services are also offered. Per-person costs for the housing and services average $1120 per month.

Participants received $5 for attending the study introduction and $20 for each interview. Participants were interviewed at baseline and at 3, 6, 9, and 12 months after enrollment. Institutional review board approval was obtained from the University of Washington and King County Mental Health Chemical Abuse and Dependency Services Division (MHCADSD).

Use Measures

We collected administrative data from the MHCADSD, Washington Depart-

Figure 1. Participant Flow Diagram

134 Participants included

- 388 Potentially eligible individuals
 - 300 Referred by King County list of high users
 - 88 Referred to DESC by other providers

- 166 Participants located for housing and study
 - 32 Excluded
 - 5 Refused housing
 - 6 Refused study participation
 - 21 Not found by ABRC after verbal agreement to participate

- 134 Participants included
 - 81 Assigned to housed treatment group
 - 53 Assigned to wait-list comparison group
 - 95 Included in housed group
 - 14 Moved to housed group before 3-month follow-up
 - 39 Included in wait-list group
 - 19 Excluded (unavailable for follow-up)
 - 3 Moved out of state
 - 1 In jail
 - 9 Deceased
 - 1 Dropped out of study
 - 5 Lost to follow-up

- 76 Completed 12-month follow-up
 - 95 Included in cost-use analysis
 - 76 Included in alcohol use analysis

- 29 Completed 6-month follow-up
 - 39 Included in cost-use analysis

- 10 Excluded (unavailable for follow-up)
 - 2 Moved out of state
 - 1 In jail
 - 7 Lost to follow-up

95 Included in cost-use analysis
76 Included in alcohol use analysis
10 Excluded (unavailable for follow-up)
2 Moved out of state
1 In jail
7 Lost to follow-up

Individuals were drawn from a list provided by secondary data sources and offered housing on a “first found, first assigned” basis. After 166 participants were located and enrolled in housing or placed on a wait-list, outreach employees discontinued searching for the remaining homeless individuals. DESC indicates Downtown Emergency Service Center; ABRC, Addictive Behaviors Research Center (University of Washington).
ment of Social and Health Services, Harborview Medical Center (HMC), King County Correctional Facility, Public Health–Seattle & King County, and Downtown Emergency Service Center. With participants’ written consent, specific itemized data were obtained, including days in jail and number of jail bookings; sobering center visits; HMC emergency department, inpatient, and outpatient contacts (date of service, length of stay for inpatient services, and billing amounts); emergency medical services (EMS) calls and transports; use of the Downtown Emergency Service Center shelter; and publicly funded medical detoxification and inpatient drug/alcohol treatment.

We also obtained claims submitted to Medicaid, which were examined for duplication with claims from other medical agencies. Only nonduplicated charges are reported. Medicaid and HMC data were actual billing amounts. Some services maintained data based on type and number of contacts or visits and not based on cost. In these cases, an estimate of the value of those services was provided by the reporting agencies (TABLE 1). The housing cost for individuals in the program was calculated by dividing the sum of all on-site operating (eg, maintenance, utilities, insurance, etc) and services costs by the capacity of the project (75 people housed at 1 time).

Self-report Measures

Self-reported demographic data included age, race/ethnicity, educational level, and marital status. Descriptive information included lifetime episodes of alcohol treatment from the Addiction Severity Index, as well as a detailed history of homelessness. A self-report medical history form assessed chronic and acute illnesses. These data were used to describe the sample and assess comparability of housed with wait-list participants.

Alcohol use (lifetime use and frequency of drinking to intoxication) was assessed using items from the Current Substance Use Assessment of the Addiction Severity Index. A modified version of the form 90-R (based on the Timeline Follow-back) was used to calculate total number of standard drinks per day in the past 30 days.

Statistical Analysis

The present study is quasi-experimental because it lacks random assignment, which can lead to imbalances between treatment groups. We used propensity scores to balance treatment groups on important covariates and strengthen causal inferences.

The primary outcomes are costs or contacts with public services per month, based on use indicators described here. A Poisson generalized estimating equation (GEE) approach with a natural logarithm link function was the primary analytic method, and an offset term of the natural logarithm of months was included to control for varying exposure rates in some analyses. The GEE Poisson model provided a good fit to the marginal distribution of costs and thus was also used for cost data, rounded to the nearest dollar. The Poisson model can be shown to be a multiplicative model, so the exponentiated coefficients (ie, e^β) can be interpreted as relative rates (RRs) or percentage increases or decreases associated with the covariate. An RR of 1 would indicate no association; 95% confidence intervals (CIs) for RRs that include 1 indicate lack of statistical significance at P < .05.

There were no known missing data for use and costs. If a service was used, it was included in the archival data provided to researchers. All participants provided consent to access records throughout the study. Use of services outside the catchment area is unknown; however, there is no evidence that individuals in either condition ceased using all services during the follow-up period (which would suggest they had moved outside the catchment area).

In addition to descriptive analyses of use and cost data for HF and control participants, the primary analyses focused on HF vs control differences at 6 months. Secondary analyses focused on length of time in housing as a predictor of outcomes for all participants in 1811 Eastlake at some point in the study and changes in alcohol use for treated participants.

For between-group analyses, we used propensity scores to balance treatment groups on important covariates. Characteristics that are imbalanced across treatment conditions are often entered as covariates, and propensity scores provide a unified approach to treatment imbalance that is appropriate for observational data. A logistic regression model was constructed with treatment condition as the outcome and prior 3 years of all outcomes as predictors, along with demographic variables, alcohol and drug use, and mental health problems. Predicted probabilities of being in the intervention group (propensity scores) were estimated for each individual, which provide a summary of the covariate imbalance across groups. The distributions of propensity scores across the 2 groups were notably different, with some regions of nonoverlap in the tails. We considered the issue of nonoverlap, regression to the mean, and participant death in sensitivity analyses for our primary analyses.

Death can strongly impact cost data in opposing directions, dependent on when the participant dies.
The key issue is whether participant deaths bias observed results, particularly change over time for the treated group. Poisson GEE regressions were run using participant death as a covariate.

Power analyses showed that power of 0.80 could be achieved to detect a standardized mean difference of 0.30 with 60 housed participants and 40 wait-list control participants. Analyses were conducted using R version 2.7.0 (R Foundation for Statistical Computing, Vienna, Austria). All reported P values are 2-tailed; significance was set at $P < .05$.

RESULTS

Descriptive Statistics

Table 2 presents baseline sample demographics. Participants were predominantly male (94%) with a mean age of 48 years. The sample was ethnically diverse, with 39% identifying as white and 28% as American Indian/Alaska Native.

| Table 2. Baseline Descriptive Statistics for the Full Sample and by Treatment Groupa |
|---|-----------------|-----------------|-----------------|-----------------|
| Male, No. (%) | Full Sample (n = 134) | Treatment Group (n = 95) | Control Group (n = 39) | P Value for Tests of Between-Group Differencesb |
| Male, No. (%) | 126 (94) | 89 (94) | 37 (95) | .79c |
| Age, mean (SD), y | 48 (10) | 48 (9) | 48 (11) | .68d |
| Ethnicity, No. (%) | | | | |
| White | 52 (39) | 38 (40) | 14 (36) | .66c |
| American Indian/Alaska Native | 38 (28) | 26 (27) | 12 (31) | |
| African American | 13 (10) | 7 (7) | 6 (15) | |
| Hispanic or Latino American | 8 (6) | 7 (7) | 1 (3) | |
| Native Hawaiian or other Pacific Islander | 3 (2) | 3 (3) | 0 | |
| Asian American | 1 (1) | 1 (1) | 0 | |
| More than 1 ethnic group | 14 (10) | 10 (11) | 4 (10) | |
| Other | 5 (4) | 3 (3) | 2 (5) | |
| Marital status, No. (%) | | | | |
| Legally married or considered oneself married| 5 (4) | 3 (3) | 2 (5) | .94c |
| Widowed | 6 (5) | 4 (4) | 2 (5) | |
| Divorced or separated | 55 (41) | 39 (41) | 16 (41) | |
| Never married | 68 (51) | 49 (52) | 19 (49) | |
| Educational status, No. (%) | | | | |
| Less than high school graduate or GED | 44 (33) | 35 (37) | 9 (23) | .24c |
| Completed GED | 15 (11) | 9 (10) | 6 (15) | |
| High school graduate | 25 (19) | 19 (20) | 6 (15) | |
| Some vocational school | 11 (8) | 8 (8) | 3 (8) | |
| Some college | 31 (23) | 17 (18) | 14 (36) | |
| College graduate | 6 (5) | 5 (5) | 1 (3) | |
| Some graduate school or advanced degree | 2 (2) | 2 (2) | 0 | |
| Serious medical problems in lifetime, No. (%)| | | | |
| Hepatitis | 54 (40) | 38 (40) | 16 (41) | .97c |
| Tuberculosis | 24 (18) | 19 (20) | 5 (13) | .32c |
| Emphysema | 10 (8) | 8 (8) | 2 (5) | .55c |
| Diabetes | 10 (8) | 7 (7) | 3 (8) | .88c |
| Age first became homeless, mean (SD), y | 31 (12) | 30 (12) | 32 (12) | .39d |
| Stable housing periods since first became homeless, mean (SD), No. | 2 (3) | 3 (3.2) | 2 (2) | .78d |
| Most common places to spend the night over past 3 y, No. (%)a | | | | |
| On the street, under a bridge or freeway, in an abandoned car, or in a park | 112 (84) | 78 (82) | 34 (87) | .55c |
| Sobering center | 112 (84) | 77 (81) | 35 (90) | .26c |
| Hospital | 100 (75) | 72 (76) | 28 (72) | .56c |
| Shelter | 87 (65) | 63 (66) | 24 (62) | .55c |
| Motel or hotel | 86 (64) | 62 (65) | 24 (62) | .15c |
| Times treated for alcohol abuse in lifetime, mean (SD), No. | 16 (55) | 17 (59) | 14 (43) | .75d |

Abbreviation: GED, general equivalency diploma.

7Percentages may not sum to 100 because of rounding.

8Differences by treatment group (treatment vs control) were examined. There were no significant differences between the 2 groups at baseline.

1t Test.

2F Test.

3All prior to living at 1811 Eastlake.
Indian/Alaska Native. As noted in Table 2, participants reported high rates of acute and chronic medical illness, a mean of 16 alcohol treatment episodes, and minimal periods of stable housing during nearly 2 decades of homelessness.

Table 3. Medians and Interquartile Ranges for All Use Data on a per-Person per-Month Basis

<table>
<thead>
<tr>
<th></th>
<th>Median (Interquartile Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Year Prior to Housing</td>
</tr>
<tr>
<td>Contacts/incidents, No.</td>
<td></td>
</tr>
<tr>
<td>Jail days</td>
<td>0.5 (0.2-2.5)</td>
</tr>
<tr>
<td>Jail bookings</td>
<td>0.2 (0.1-0.3)</td>
</tr>
<tr>
<td>Shelter nights</td>
<td>0.5 (0.1-3.5)</td>
</tr>
<tr>
<td>HMC^b</td>
<td>0.9 (0.3-1.8)</td>
</tr>
<tr>
<td>EMS</td>
<td>0.4 (0.2-1.4)</td>
</tr>
<tr>
<td>Detoxification center^b</td>
<td>0.0 (0.0-0.1)</td>
</tr>
<tr>
<td>Sobering center</td>
<td>6.1 (1.4-11.7)</td>
</tr>
<tr>
<td>Costs/charges, $</td>
<td></td>
</tr>
<tr>
<td>Medicaid^b</td>
<td>612 (31-4493)</td>
</tr>
<tr>
<td>HMC</td>
<td>139 (0-855)</td>
</tr>
<tr>
<td>EMS</td>
<td>505 (157-1676)</td>
</tr>
<tr>
<td>Total cost, $^b</td>
<td>4066 (2067-8264)</td>
</tr>
</tbody>
</table>

Abbreviations: EMS, emergency medical services; HMC, Harborview Medical Center.

^b Because intervention participants were recruited first, data for wait-list controls were only available to 6 months.

^b Significantly different at baseline for the 2 groups.

![Figure 2. Rate Ratios and 95% Confidence Intervals for Treatment Differences at 6 Months](link_to_image)

Comparison of HF and Control Participants at 6 Months

Poisson GEE regressions with propensity score adjustments were used for all outcomes, comparing treated vs control participants at 6 months. There were no significant differences between HF and control participants prior to the intervention, controlling for propensity scores. Figure 2 presents rate ratios with 95% CIs for the time × treatment interaction, which is a direct test of treatment differences at 6 months. There is a significant difference between HF and control groups in total costs, with HF participants accruing approximately 53% less costs compared with controls over the first 6 months of the study (RR, 0.47; 95% CI, 0.25-0.88).

Cost offsets were calculated using a difference-in-differences approach. Mean per-month total costs were estimated for 1 year prior to intervention and for 6 months of intervention, for housed and control groups separately. Housed participants had $3569 less cost per month during the housed period relative to control participants. Housing costs were $1120 per person per month, yielding a total mean cost off-
set of $2449 per person per month for HF participants.

Participants were chosen because they had extreme health care use and costs, and thus one concern is regression to the mean (ie, extreme scores will tend to be less extreme in the future). We examined sensitivity of the 6-month treatment differences for the subset of our housed and control samples with overlapping propensity scores (thus, they were highly similar on background characteristics and costs). Results were identical to those reported, providing evidence that observed treatment differences were not purely artifacts of regression to the mean.

A second concern was that 9 participants died, and all were in the housed condition. Of 388 high-use potential participants originally proposed as eligible for this study, 37 are known to have died prior to or during the study period; thus, the mortality rate in the HF sample was consistent with the broader study population. Five HF residents died from previously diagnosed chronic illness, including liver cancer (1), cardiovascular disease (3), and unspecified natural causes (1). One of these deaths may have been contributed to by cocaine overdose. Two died from blunt-force head trauma (likely due to falling), both outside the house (1 after the resident had left the housing program). One remaining participant died from a suspected heroin overdose. In analyses using participant death as a covariate, those who died during the study had nonsignificantly higher costs prior to housing (RR, 1.66; 95% CI, 0.90-2.97); however, there was no evidence of differential change across time. Further, analyses removing those who died led to identical conclusions as those reported.

Effect of Length of Time in House

Poisson GEE regressions assessed the association between length of time in the house and costs/use for all participants who were housed at some point, regardless of treatment condition (ie, wait-list control participants were housed as spots became available, and 16 of the 39 wait-list participants moved in after the 6-month follow-up and provided data for the present analyses). Two sources of data were used: per-month use for 1 year prior to house entry and total use for the period of time that the participant was in the house. Time was modeled using a natural logarithm transformation. All outcomes except days in the detoxification center showed a significant negative association with the log of month time, indicating that use dropped as participants were housed longer. **Figure 3** shows rate ratios with 95% CIs for reduction in use and costs over time, and **Figure 4** shows the predicted regression line of drop in total costs. (Note that the baseline costs in Figure 4 appear higher than those reported in Table 3 because Table 3 reported a median whereas the predicted regression line is based on a mean.)

Alcohol Use

Average number of daily drinks was assessed for change from the year prior to intervention to 6, 9, and 12 months in housing. Because a small number of participants reported drinking impossible amounts of alcohol (eg, 100 or more standard drinks per day), data that were more than 70 were reduced and set to 70. Median number of drinks...
dropped steadily, from 15.7 per day prior to housing to 14.0, 12.5, and 10.6 per day at 6, 9, and 12 months in housing, respectively. Poisson GEE with a linear time covariate showed a similar trend to the medians, with an approximate 2% decrease per month in daily drinking while participants were housed (RR, 0.98; 95% CI, 0.96-0.99). Participants also showed a decreasing trend across time in housing for self-reported number of days drinking to intoxication from the Addiction Severity Index, with medians of 28, 15, 20, and 10 days (out of 30 days) at baseline and 6, 9, and 12 months, respectively. Due to severe bimodality in the distribution, a rank-based nonparametric test was used to assess change across time. Kendall coefficient of concordance revealed a significant decrease in days intoxicated ($\chi^2 = 14.6, P = .003$).

COMMENT

The project demonstrated significant cost savings and reductions in alcohol use for housed individuals over the course of the first year. Cost offsets for HF participants at 6 months, in comparison with wait-list controls and accounting for the cost of housing, averaged $2449 per person per month. At 12 months, the 95 housed individuals had reduced their total costs by more than $4.0 million compared with the year prior to enrollment, or $42,964 per person per year, as compared with a cost of $13,440 per person per year to administer the housing program. Finally, length of time in housing was significantly related to reductions in use and cost of services, with those housed for the longest period of time experiencing the greatest reductions.

The study also demonstrated that individuals in the housed group experienced reductions in their alcohol use and likelihood of drinking to intoxication over time. The HF intervention was associated with substantial declines in drinking despite no requirement to abstain from or reduce drinking to remain housed.

As with other studies of supportive housing for mentally ill homeless people, this study showed decreases in the use of expensive crisis-oriented systems like hospitals and jails. Additionally, this study showed substantial improvement in overall expenditures for participants even when factoring in the costs of the housing and services provided, in contrast with other cost-offset studies. This intervention sought out the individuals with the most severe problems who had consumed the most services prior to housing enrollment, offering more opportunity for cost offsets to be realized.

The current study focused on a primarily alcohol-dependent population brought into a housing environment. Although one prior study demonstrated success in use reductions by enrolling a similar population in treatment in lieu of incarceration, overall acceptance of the treatment intervention was only 58% compared with 95% acceptance of the housing in our study. Another study found that 91% of chronically homeless people with severe alcohol problems identified a need for housing assistance, but only 64% identified a need for alcohol treatment. Moreover, permanent supportive housing programs without treatment requirements have been shown to be preferred among homeless mentally ill people while demonstrating similar retention rates compared with more structured, treatment-based programs. Thus, HF is more acceptable to the target population than treatment while resulting in similar benefits.

The effect of housing on alcohol use has also been seen in other HF approaches. Such programs have shown stability or improvement in alcohol use among individuals with primary mental illness. Concerns have been raised about the effect of low-demand housing on alcohol and drug treatment acceptance or adherence. A recent study found cocaine-dependent homeless people in treatment were more likely to abstain from drug use when in abstinence-based housing than in other housing. Importantly, however, the study also demonstrated that being in any housing resulted in more abstinence than remaining homeless did. Thus, the current study is consistent with prior research demonstrating benefits of stable housing on alcohol use despite the fact that participants were neither expected to abstain from alcohol nor required to access treatment as a condition of housing.

The current study has several limitations. Participants were not randomly assigned to condition, and there were differences between groups in costs of services used prior to enrollment. While the propensity score approach statistically controlled for these differences, and sensitivity analyses using only those with similar background characteristics and use at baseline found equivalent results, the potential impact of these differences on the pattern of outcomes cannot be completely dismissed. The current sample was also drawn from a population with extremely high use of publicly funded services, and it is likely that cost offsets would be attenuated in a less-severe sample. Future research using larger and more representative samples and stronger comparative research designs is warranted to address these issues.

Further, the current study relied on archival data from official databases for evaluating use and costs of services. Although this is a strength, limitations to archival databases can include incorrect or inaccurate entries, failure to appropriately match participants between study and archival databases due to spelling or other errors, and delay in entry of records into archival databases. Extensive review of archival records was undertaken to ensure accurate matching of participants. Further, there is no reason to believe these errors would be more apparent at one assessment point than another or between housed and wait-list groups.

An additional limitation is the inclusion of only 1 hospital in the records search. Harborview Medical Center is the most commonly used area hospital for this population, but it is likely that other hospital-based care was provided and may not be reflected in the

©2009 American Medical Association. All rights reserved.
The large reduction in emergency health care expenses by HF participants has implications for health care systems, particularly health service payers and providers of high levels of uncompensated care. These groups might want to partner with supportive housing providers to care for the highest alcohol-related users of hospital services to reduce expenses.

Additional implications are for the creation of more specific alcohol interventions for this population when they become housed. Residents of HF are offered support and counseling about substance use but have no expectation of treatment engagement or abstinence. The setting is therefore appropriate for future harm reduction interventions for those who want to address their alcohol-related problems. Approaches could include adaptation of skills-building curricula aimed at other heavy-drinking populations or implementation of a managed alcohol administration program such as those programs already showing initial promise for this population in shelter settings.

CONCLUSIONS

These findings support the basic premise of Housing First: providing housing to individuals who remain actively addicted to alcohol, without conditions such as abstinence or treatment attendance, can reduce the public burden associated with overuse of crisis services and reduce alcohol consumption. Findings suggest that permanent, rather than temporary, housing may be necessary to fully realize these cost savings, because benefits continued to accrue the longer these individuals were housed. Findings support strategies to retain these individuals in housing, including offering on-site medical and mental health services, supportive case managers, and minimal rules and regulations pertaining to their housing. In sum, HF is associated with improvements in the life circumstances and drinking behaviors of this chronically homeless population while reducing their use of expensive health and criminal justice services.

Author Contributions: Dr Larimer had full access to all of the data in the study and the responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Larimer, Garner, Atkins, Malone, Burlingham, Ginzler, Clifasefi, Hobson, Marlatt.

Acquisition of data: Larimer, Garner, Burlingham, Lonczak, Tanzer, Ginzler, Clifasefi.

Analysis and interpretation of data: Atkin, Larimer, Malone, Garner, Burlingham, Lonczak, Tanzer, Ginzler, Clifasefi, Hobson, Marlatt.

Drafting of the manuscript: Larimer, Malone, Garner, Atkins, Burlingham, Lonczak, Tanzer, Ginzler, Clifasefi, Hobson, Marlatt.

Critical revision of the manuscript for important intellectual content: Larimer, Malone, Garner, Atkins, Lonczak, Tanzer, Ginzler, Clifasefi, Hobson, Marlatt.

Statistical analysis: Atkin.

Obtained funding: Larimer, Malone, Garner, Burlingham, Lonczak, Tanzer, Ginzler, Clifasefi, Hobson, Marlatt.

Administrative, technical, or material support: Malone, Garner, Burlingham, Lonczak, Tanzer, Ginzler, Clifasefi, Hobson.

Study supervision: Larimer, Garner, Lonczak, Ginzler, Clifasefi, Marlatt.

Financial Disclosures: The Downtown Emergency Service Center (DESC) approached University of Washington researchers to obtain a third-party evaluation of the 1811 Eastlake program. This academic research team and the DESC had not previously worked together, nor did any authors have vested or conflicting interests beyond what is noted here. Dr Marlatt has discussed 1811 Eastlake and the evaluation of it, along with other related topics, at professional meetings for which he reported receiving honoraria. Messrs Hobson and Malone have discussed 1811 Eastlake and the evaluation of the program at meetings with policy makers, other agencies, and professional conferences. Neither has received direct financial benefit from such dissemination, although the DESC may subsequently gain public favor and funding as a result. Success with future funding to further explore the 1811 Eastlake Housing First program would likely include support of research-related functions of the DESC. No further financial disclosures were reported by the authors.

Funding/Support: The Substance Abuse Policy Research Program (SAPRP) of the Montana, Wyoming, and North Dakota Center for Public Health and Addiction Research (PCPHAR) at the University of Montana provided funding for this study. The SAPRP is funded by the Foundation for the National Prevention Research Institute, which is supported by the National Institute on Drug Abuse (DA11047, David A. Marlatt, MD, P30DA001438, David A. Marlatt, MD, and R01DA022645, John C. Jupiter, PhD) and the National Institute on Alcohol Abuse and Alcoholism (AA009457-01, David A. Marlatt, MD). Dr Marlatt received funding from the National Institute on Alcohol Abuse and Alcoholism (AA003385) and the National Institute on Drug Abuse (DA022645). Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA005345, Charles A. Marlatt, PhD; DA004230, Charles A. Marlatt, PhD; and DA004774, Charles A. Marlatt, PhD) and from the National Institute on Drug Abuse (DA005948, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project. Drs Atkins, Larimer, and Lonczak received funding from the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) and the National Institute on Drug Abuse (DA004774, Charles A. Marlatt, PhD) to fund this project.
Role of the Sponsor: The SAPRP and NIH (through the National Institute on Drug Abuse) had no role in the design and conduct of the study; in the collection, management, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript. The authors employed by the DESC (Messrs Hobson, Malone, and Tanzer) have been involved with all phases of this research and manuscript development, but all statistical analyses and primary interpretation of data have been performed by Dr Atkins and other academic members of the research team.

Previous Presentation: Presented in part at the annual SAPRP awardee conference; December 16, 2008; Tucson, Arizona. Dr Atkins used this data to eluci- date statistical techniques in the peer-reviewed oral paper “When You Can’t Randomize, What Can You Do? An Introduction to Propensity Score Matching for Quasi-Experimental Designs” at the 2008 Annual Meeting of the Association for Behavioral and Cognitive Therapies; November 16, 2008; Orlando, Florida.

Additional Contributions: Several individuals worked tirelessly as volunteer research trainees to locate and interview study participants, enter data, and help with office tasks. None of the individuals received mon- etary compensation, although some received university credit. They include the following: Frank Angelo, BS, Northern California Institute for Research and Edu- cation; Hillary Augustine-Vandenbos, MA; Tawney Collier, MA; Saoara playwright; Sonja Stidwell; Canadian Pot; Liza Redding, MSW, from the University of Washing- ton Addictive Behaviors Research Center; Robin Bal- lad, BA, Indiana University; Joelle Cook, BS, Tajana Ellis; Sara Liu, BA; and Sonja Steck from the Univer- sity of Washington; Beth Dana, BA, and Ari Natin- sky, BA, Antioch University; Anne Douglass, BA, Kenyon College; Scott Hunt, MA, Fielding Graduate University; Dorian Hunter-Reel, MS, Rutgers Univer- sity Center of Alcohol Studies; Matt Mutton, MSW, University of Washington–Harborview Medical Cen- ter; Kelly Parker-Maloney, BA, Pennsylvania State Univer- sity; David Perlman, BS, University of Wisconsin, Madison; Stephanie Preston, BA, Pacific University; Roi- sin O’Connor, PhD, Dalhousie University; Laramie Smith, BA, University of Connecticut (Department of Psychology and Center for Health Intervention and Prevention); and Marcel Tassara, BS, University of Kan- sas. Susan Collins, PhD; M. Christina Birbaum Hove, PhD; and Michele Peake Andruski, PhD; University of Washington Department of Psychiatry and Behav- ioral Sciences, served as postdoctoral research trainees on this project sponsored through grant T32 AA007459-25 (Psychology Training in Alcohol Research) from the NIAAA.

REFERENCES

2. Burt MR, Heddenon J, Zweig J, Ortiz M, Anon-Tumham L, Johnson SM. Strategies for Reducing Chronic Street Homelessness: Find no role in the design and conduct of the study; in the collection, management, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript. The authors employed by the DESC (Messrs Hobson, Malone, and Tanzer) have been involved with all phases of this research and manuscript development, but all statistical analyses and primary interpretation of data have been performed by Dr Atkins and other academic members of the research team.

Previous Presentation: Presented in part at the annual SAPRP awardee conference; December 16, 2008; Tucson, Arizona. Dr Atkins used this data to elucidate statistical techniques in the peer-reviewed oral paper “When You Can’t Randomize, What Can You Do? An Introduction to Propensity Score Matching for Quasi-Experimental Designs” at the 2008 Annual Meeting of the Association for Behavioral and Cognitive Therapies; November 16, 2008; Orlando, Florida.

Additional Contributions: Several individuals worked tirelessly as volunteer research trainees to locate and interview study participants, enter data, and help with office tasks. None of the individuals received monetary compensation, although some received university credit. They include the following: Frank Angelo, BS, Northern California Institute for Research and Education; Hillary Augustine-Vandenbos, MA; Tawney Collier, MA; Saoara playwright; Sonja Stidwell; Canadian Pot; Liza Redding, MSW, from the University of Washington Addictive Behaviors Research Center; Robin Ballard, BA, Indiana University; Joelle Cook, BS, Tajana Ellis; Sara Liu, BA; and Sonja Steck from the University of Washington; Beth Dana, BA, and Ari Natinsky, BA, Antioch University; Anne Douglass, BA, Kenyon College; Scott Hunt, MA, Fielding Graduate University; Dorian Hunter-Reel, MS, Rutgers University Center of Alcohol Studies; Matt Mutton, MSW, University of Washington–Harborview Medical Center; Kelly Parker-Maloney, BA, Pennsylvania State University; David Perlman, BS, University of Wisconsin, Madison; Stephanie Preston, BA, Pacific University; Rosin O’Connor, PhD, Dalhousie University; Laramie Smith, BA, University of Connecticut (Department of Psychology and Center for Health Intervention and Prevention); and Marcel Tassara, BS, University of Kansas. Susan Collins, PhD; M. Christina Birbaum Hove, PhD; and Michele Peake Andruski, PhD; University of Washington Department of Psychiatry and Behavioral Sciences, served as postdoctoral research trainees on this project sponsored through grant T32 AA007459-25 (Psychology Training in Alcohol Research) from the NIAAA.

2. Burt MR, Heddenon J, Zweig J, Ortiz M, Anon-Tumham L, Johnson SM. Strategies for Reducing Chronic Street Homelessness: Find no role in the design and conduct of the study; in the collection, management, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript. The authors employed by the DESC (Messrs Hobson, Malone, and Tanzer) have been involved with all phases of this research and manuscript development, but all statistical analyses and primary interpretation of data have been performed by Dr Atkins and other academic members of the research team.

Previous Presentation: Presented in part at the annual SAPRP awardee conference; December 16, 2008; Tucson, Arizona. Dr Atkins used this data to elucidate statistical techniques in the peer-reviewed oral paper “When You Can’t Randomize, What Can You Do? An Introduction to Propensity Score Matching for Quasi-Experimental Designs” at the 2008 Annual Meeting of the Association for Behavioral and Cognitive Therapies; November 16, 2008; Orlando, Florida.

Additional Contributions: Several individuals worked tirelessly as volunteer research trainees to locate and interview study participants, enter data, and help with office tasks. None of the individuals received monetary compensation, although some received university credit. They include the following: Frank Angelo, BS, Northern California Institute for Research and Education; Hillary Augustine-Vandenbos, MA; Tawney Collier, MA; Saoara playwright; Sonja Stidwell; Canadian Pot; Liza Redding, MSW, from the University of Washington Addictive Behaviors Research Center; Robin Ballard, BA, Indiana University; Joelle Cook, BS, Tajana Ellis; Sara Liu, BA; and Sonja Steck from the University of Washington; Beth Dana, BA, and Ari Natinsky, BA, Antioch University; Anne Douglass, BA, Kenyon College; Scott Hunt, MA, Fielding Graduate University; Dorian Hunter-Reel, MS, Rutgers University Center of Alcohol Studies; Matt Mutton, MSW, University of Washington–Harborview Medical Center; Kelly Parker-Maloney, BA, Pennsylvania State University; David Perlman, BS, University of Wisconsin, Madison; Stephanie Preston, BA, Pacific University; Rosin O’Connor, PhD, Dalhousie University; Laramie Smith, BA, University of Connecticut (Department of Psychology and Center for Health Intervention and Prevention); and Marcel Tassara, BS, University of Kansas. Susan Collins, PhD; M. Christina Birbaum Hove, PhD; and Michele Peake Andruski, PhD; University of Washington Department of Psychiatry and Behavioral Sciences, served as postdoctoral research trainees on this project sponsored through grant T32 AA007459-25 (Psychology Training in Alcohol Research) from the NIAAA.

2. Burt MR, Heddenon J, Zweig J, Ortiz M, Anon-Tumham L, Johnson SM. Strategies for Reducing Chronic Street Homelessness: Find no role in the design and conduct of the study; in the collection, management, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript. The authors employed by the DESC (Messrs Hobson, Malone, and Tanzer) have been involved with all phases of this research and manuscript development, but all statistical analyses and primary interpretation of data have been performed by Dr Atkins and other academic members of the research team.

Previous Presentation: Presented in part at the annual SAPRP awardee conference; December 16, 2008; Tucson, Arizona. Dr Atkins used this data to elucidate statistical techniques in the peer-reviewed oral paper “When You Can’t Randomize, What Can You Do? An Introduction to Propensity Score Matching for Quasi-Experimental Designs” at the 2008 Annual Meeting of the Association for Behavioral and Cognitive Therapies; November 16, 2008; Orlando, Florida.

Additional Contributions: Several individuals worked tirelessly as volunteer research trainees to locate and interview study participants, enter data, and help with office tasks. None of the individuals received monetary compensation, although some received university credit. They include the following: Frank Angelo, BS, Northern California Institute for Research and Education; Hillary Augustine-Vandenbos, MA; Tawny Collier, MA; Saoara playwright; Sonja Stidwell; Canadian Pot; Liza Redding, MSW, from the University of Washington Addictive Behaviors Research Center; Robin Ballard, BA, Indiana University; Joelle Cook, BS, Tajana Ellis; Sara Liu, BA; and Sonja Steck from the University of Washington; Beth Dana, BA, and Ari Natinsky, BA, Antioch University; Anne Douglass, BA, Kenyon College; Scott Hunt, MA, Fielding Graduate University; Dorian Hunter-Reel, MS, Rutgers University Center of Alcohol Studies; Matt Mutton, MSW, University of Washington–Harborview Medical Center; Kelly Parker-Maloney, BA, Pennsylvania State University; David Perlman, BS, University of Wisconsin, Madison; Stephanie Preston, BA, Pacific University; Rosin O’Connor, PhD, Dalhousie University; Laramie Smith, BA, University of Connecticut (Department of Psychology and Center for Health Intervention and Prevention); and Marcel Tassara, BS, University of Kansas. Susan Collins, PhD; M. Christina Birbaum Hove, PhD; and Michele Peake Andruski, PhD; University of Washington Department of Psychiatry and Behavioral Sciences, served as postdoctoral research trainees on this project sponsored through grant T32 AA007459-25 (Psychology Training in Alcohol Research) from the NIAAA.